Mathematical structures in logic
 Exercise class 5
 Applications of duality and a bit of universal algebra

3 March 2016
(1) Let (P, \leq) be a poset. Then $\operatorname{Up}(P)$, the upsets on P, form a topology on P.
(a) Show that this is an Alexandrov topology, i.e. show that the open sets are closed under arbitrary intersections.
(b) Show that for every $P^{\prime} \subseteq P, \mathrm{Cl}\left(P^{\prime}\right)=\downarrow P^{\prime}$.
(c) Describe the interior of a set $P^{\prime} \subseteq P$.

Here $\mathrm{Cl}\left(P^{\prime}\right)$ denotes the closure of P^{\prime} and as usual $\downarrow P^{\prime}:=\{q \in P \mid \exists p \in$ $\left.P^{\prime}, q \leq p\right\}$.
(2) Show that every equational class is a variety, i.e. show that validity of equations is preserved by the operators \mathbf{H}, \mathbf{S} and \mathbf{P}.
(3) (a) Find an example of a Heyting algebra A and a subalgebra A^{\prime} of A such that A^{\prime} is not a homomorphic image of A.
(b) Find an example of a Heyting algebra that has a homomorphic image B such that B is not isomorphic to a subalgebra of A.
(4) Let (X, τ, \leq) be a Priestley space show that
(a) the set $\uparrow x$ is closed for each $x \in X$;
(b) the sets $\uparrow F$ and $\downarrow F$ are closed for each closed subset F of (X, τ).

Additional exercises

(1) Let $\mathfrak{P}=(X, \tau, \leq)$ be a Priestley space. Show that for every clopen upset U of \mathfrak{P} there exists $a \in X$ such that $U=\phi(a)$, where $\phi(a)$ is the set of prime filters on (X, \leq) containing a (Hint: You will most likely have to use compactness twice, first for a cover of U^{c} and then for a cover of U.)
(2) (More on Alexandroff spaces and posets)
(a) Let $\mathfrak{X}=(X, \tau)$ be an Alexandrov space. Can you find a partial order \leq on X such that $\tau=\operatorname{Up}((X, \leq))$? Supply a proof are give a counter-example.
(b) Let $f: P \rightarrow Q$ be a function between posets $\left(P, \leq_{P}\right)$ and $\left(Q, \leq_{Q}\right)$. Show that f is order-preserving iff f is continuous with respect to the topologies $\operatorname{Up}(P)$ and $\operatorname{Up}(Q)$.
(c) Let $\left(P, \leq_{P}\right)$ and $\left(Q, \leq_{Q}\right)$ be posets. Characterise the order-preserving maps $f: P \rightarrow Q$ with the property that f is an open map as a function between the induced Alexandrov spaces.
(3) Which of the class operations \mathbf{H}, \mathbf{S} and \mathbf{P} preserves quasi-equations, i.e., clauses of the form

$$
s_{1} \approx t_{1}, \ldots, s_{n} \approx t_{n} \Longrightarrow s \approx t
$$

