Mathematical structures in logic

Exercise class 5

Applications of duality and a bit of universal algebra

3 March 2016

- (1) Let (P, \leq) be a poset. Then $\operatorname{Up}(P)$, the upsets on P, form a topology on P.
 - (a) Show that this is an Alexandrov topology, i.e. show that the open sets are closed under arbitrary intersections.
 - (b) Show that for every $P' \subseteq P$, $Cl(P') = \downarrow P'$.
 - (c) Describe the interior of a set $P' \subseteq P$.

Here Cl(P') denotes the closure of P' and as usual $\downarrow P' := \{q \in P \mid \exists p \in P', q \leq p\}.$

- (2) Show that every equational class is a variety, i.e. show that validity of equations is preserved by the operators **H**, **S** and **P**.
- (3) (a) Find an example of a Heyting algebra A and a subalgebra A' of A such that A' is not a homomorphic image of A.
 - (b) Find an example of a Heyting algebra that has a homomorphic image B such that B is not isomorphic to a subalgebra of A.
- (4) Let (X, τ, \leq) be a Priestley space show that
 - (a) the set $\uparrow x$ is closed for each $x \in X$;
 - (b) the sets $\uparrow F$ and $\downarrow F$ are closed for each closed subset F of (X, τ) .

Additional exercises

- (1) Let $\mathfrak{P} = (X, \tau, \leq)$ be a Priestley space. Show that for every clopen upset U of \mathfrak{P} there exists $a \in X$ such that $U = \phi(a)$, where $\phi(a)$ is the set of prime filters on (X, \leq) containing a (*Hint:* You will most likely have to use compactness twice, first for a cover of U^c and then for a cover of U.)
- (2) (More on Alexandroff spaces and posets)
 - (a) Let $\mathfrak{X} = (X, \tau)$ be an Alexandrov space. Can you find a partial order \leq on X such that $\tau = \text{Up}((X, \leq))$? Supply a proof are give a counter-example.

- (b) Let $f: P \to Q$ be a function between posets (P, \leq_P) and (Q, \leq_Q) . Show that f is order-preserving iff f is continuous with respect to the topologies $\operatorname{Up}(P)$ and $\operatorname{Up}(Q)$.
- (c) Let (P, \leq_P) and (Q, \leq_Q) be posets. Characterise the order-preserving maps $f: P \to Q$ with the property that f is an open map as a function between the induced Alexandrov spaces.
- (3) Which of the class operations ${\bf H},\,{\bf S}$ and ${\bf P}$ preserves quasi-equations, i.e., clauses of the form

$$s_1 \approx t_1, \ldots, s_n \approx t_n \implies s \approx t.$$